
Exploring Modular Tickless Prioritized Preemptive RTOS for Avionics March 13, 2016 1

Exploring Modular Tickless Prioritized
Preemptive RTOS for Avionics

1 Abstract

This paper explores using Modular Tickless Prior-
itized Preemptive RTOS (MTPPR) for avionics.
Where all components are individual packaged bi-
naries, including bootloader, kernel, drivers, and
applications. A properly architected MTPPR
can be certified for FAA air space and also cap-
ture the performance available to the system.
MTPPR supports several goals set by Integrated
Modular Avionics (IMA) architects, including:
allowing multiple vendors on a CPU. The long
term goal is to replace ARINC 653 with a safer,
a more cost effective system, support Multiple
Independent Levels of Security (MILS), and able
to cover 95 percent of all avionic systems.
FAA certification is the paramount require-

ment. FAA’s continuing mission is to provide
the safest, most efficient aerospace system in the
world. 1

Implementing ARINC 653 software partition-
ing contains numerous invaluable lessons which
can be applied back to a Modular Tickless Priori-
tized Preemptive RTOS targeted for FAA avion-
ics. Although this paper is neither definitive
nor authoritative, it does propose a solution to
the core FAA avionic issues. This paper cov-
ers the entire avionics life cycle and attempts to
dig directly to issues, which are often hidden by
metrics, software abstractions, and departmental
barriers.
An MTPPR solution can lower complexity,

cost, and development schedule for avionic solu-
tions by both supporting more capabilities and

1http://www.faa.gov/about/mission

a simpler infrastructure. An MTPPR approach
supports multiple third party hardware, software,
and drivers. This can be critical to many orga-
nizations that desire to fly in FAA controlled
airspace, but do not have enough resources for a
complete or certifiable solution.
Generally, prioritized preemptive systems are

not able to provide a deterministic solution with-
out maintaining strict control over the entire
system. However, todays hardware and tools
makes it far easier to place these strict controls
over the system and support multicore proces-
sors. MTPPR can be deterministic for critical
applications, share a platform with applications
with lesser criticality, and provide a generic envi-
ronment for multiple third party vendors.

Contents

1 Abstract 1

2 Identification 2

3 Deterministic 3
3.1 MTPPR Certification Tool . . . 3
3.2 Network Example 3
3.3 Quantifying Resource Impact . . 3

3.3.1 General Worst Case . . . 3
3.3.2 Specific Worst Case . . . 3
3.3.3 Higher Priority Processes 4
3.3.4 Network, DMA, and Bus

Loading 4
3.4 Modular and Protected 4

3.4.1 Separate Core Bootloader,
Kernel, and Driver Packages 4

3.5 Multiple Priorities per Process . 4
3.5.1 Watchdog Timer Example 4

3.6 Tickless 5
3.6.1 Serial IO Example 5
3.6.2 Phased Lock Sync Example 5

http://www.faa.gov/about/mission

Exploring Modular Tickless Prioritized Preemptive RTOS for Avionics March 13, 2016 2

3.7 Cold, Warm, and Hot Starts . . 5
3.8 Signals, Coprocessors, and

Abortable Processes 5
3.9 Human Factors 5

3.9.1 Complexity 6
3.9.2 Impact Certification Tool 6
3.9.3 Modular 6

4 Process 6

5 Requirements 6
5.1 GNU ELF Executables 6
5.2 MTPPR Runtime Lib 6
5.3 Integrated Diagnostic 6
5.4 Space Protection 6

5.4.1 Zero-Copy Support 6
5.4.2 Inter process communication 7
5.4.3 Device Access 7
5.4.4 Shared Libraries 7

5.5 Read-Only Executables 7
5.6 Policy: Zero or Minimal Interrupts 7
5.7 Multiple Independent Levels of Se-

curity (MILS) 7

6 Design 7
6.1 Tickless Scheduler 7
6.2 Interrupts 8

7 Cert Tool Verification 8

8 Rational and Issues 8
8.1 Attention to DO-178B Level A

and B applications 8
8.2 Worst Case Scenarios 8
8.3 Complexity 8
8.4 Thermal 8
8.5 Lead-Free 9
8.6 Single Event Upset (SEU) and

Soft Errors 9

8.7 Electro-Magnetic Interference
(EMI) events 9

8.8 Parity only buses (VME and PCI) 9
8.9 Silos and Conflict of Interests . . 9
8.10 Obsolescence Issues 9
8.11 Test Support 9
8.12 Diagnostics and Error handling . 9
8.13 Languages Ada, C, C++ 9
8.14 Priority Inversions 9
8.15 Structural Coverage 10
8.16 Degraded operations due to Hard-

ware Failure 10
8.17 Cache and MMU parity 10
8.18 Rule Enforcement 10
8.19 Double DMA protections 10
8.20 Real Time Requirements 10
8.21 Electro-Magnetic Interference

(EMI) events 10

9 Clarifications and Terms 10
9.1 Abortable Tasks 10
9.2 Disseminators 10
9.3 Mean Time Between Failures

(MTBF) 10
9.4 MILS 11
9.5 MLS 11
9.6 Multipriority 11
9.7 Preemptive 11
9.8 Prioritized 11
9.9 Real-Time 11

10 References 11

2 Identification

Author: Ty Zoerner, Infinite Delta Corp, March
13, 2016

$Id: avionics_rtos.tex 117 2016-03-13 20:46:08Z ty $

$HeadURL: svn+ssh://infinitedelta.com/svn/papers/avionics_rtos/avionics_rtos.tex $

Exploring Modular Tickless Prioritized Preemptive RTOS for Avionics March 13, 2016 3

3 Deterministic

This paper argues a prioritized preemptive sys-
tem can be deterministic for critical applications.
An application’s dependencies determines its abil-
ity to meet requirements. Dependencies include
CPU, higher priority processes, interrupts, cache,
buses, memory, DMA, co-processors, multicore,
or anything that can affect the application.

3.1 MTPPR Certification Tool

Designated Engineering Representatives (DER)
are already familiar with many certification and
impact analysis tools. Impact analysis shall be
an integral part of an MTPPR certification tool
and shall include all the dependencies. DERs and
Human Factors requires it. 3.9.2

3.2 Network Example

Consider a typical situation with applications
running while network data is being received
into memory shared by all. The network impact
varies widely between applications and between
systems. The compute bound applications are not
effected by the network traffic. Even the heavily
memory dependant applications may only take
twenty percent longer to complete under a full
network load. The network traffic itself can vary
considerably, and may or may not need to be
time deterministic.

3.3 Quantifying Resource Impact

An application shall be subjected all possible de-
pendency abuse and for different levels for certifi-
cation. Two approaches can be taken to quantify
resource impact upon applications. A general
worst case approach, or a specific worst case
approach. Impact of all cases are recorded and

forwarded to the impact certification tool for final
product certification.

MTPPR Cert Tool

System Config

App1 Cert Data

App2 Cert Data

App3 Cert Data

Load TableReports

$Id: certtool.fig 6 2010−08−22 20:00:59Z lloyd $

3.3.1 General Worst Case

A general worst case resource approach would
include 100 percent device usage. The above
network example would need to test network
traffic overhead for all applications. Thereby
the network needs no restrictions in this system.
This is true for each dependant resource. 8.2

3.3.2 Specific Worst Case

However, many systems can not afford to assume
a 100 percent network traffic overhead. The
systems that can limit network traffic, a worst
case scenario can be determined from a limited
network traffic. Note, even for limited network
traffic system, all the traffic could occur during
a specific application time. So for many applica-
tions requiring small amount of CPU, the network
traffic must be added. However, for long running
applications, a limited network traffic may just
make the difference to meet requirements.

Exploring Modular Tickless Prioritized Preemptive RTOS for Avionics March 13, 2016 4

3.3.3 Higher Priority Processes

Higher priority processes and interrupts must be
included into the impact analysis for a process’s
ability to complete. Not only do these processes
grab the CPU, but also lose precious cache data
which may need reloading. Hard CPU limits
for all processes and interrupts shall be imposed
so that no run away process can interfere with
critical programs.

Not only a does the MTPPR limit interrupt’s
time, the interrupt is event limited, to prevent
lockup due to physical failures.

3.3.4 Network, DMA, and Bus Loading

The application shall be tested under several
different levels of hardware interference issues.
The impact to the application shall be recorded
for system level certification purposes.

3.4 Modular and Protected

A modular design using independent binary
packages allows full memory management unit
(MMU) protection between all processes, devices,
and kernel. Processes are now entirely protected
from other processes, except where explicit mem-
ory is to be shared. A modular design allows a
productive and distributed development environ-
ment. 3.9.3

Most importantly, the individual binary images
are protected from most changes, minimizing
regression testing. This assumes all the following
are true and is an accepted process:

1. All the binaries packages making up the test
suite have not changed.

2. The hardware resources being used for the
test have not changed.

3. The parameters driving the test have not
changed.

Accepting this process eliminates the need for
source code analysis tools which many DERs find
suspicious.

3.4.1 Separate Core Bootloader, Kernel,
and Driver Packages

A bootloader package shall reside at the powerup
boot vector, setup the basic system configura-
tion, determine the boot state, and jump to the
kernel. The kernel package is only specific to
the processor, and does not contain any board
specific information. The system load table is
passed into the kernel from the bootloader for
other packages to load to complete the system.
Separate loadable drives are used instead of a
single BSP containing all the hardware drivers.
A minimal core must include a watchdog and
interrupt enable/disable processes.

3.5 Multiple Priorities per Process

A good cooperative system can supporting process
multiple priorities. The multiple priorities differs
from dynamic priorities to support the required
impact analysis certification tool.

3.5.1 Watchdog Timer Example

A watchdog timer is required for a given system,
where if not kicked within 100 mS to CPU is reset.
A cooperative watchdog time routine would be
a low priority 25mS kicker with a 90mS high
priority must perform setting. Thus allowing
most kicks at convenient times and only jumping
in when it must when the deadline looms. Very
valuable for power conservation too.

Exploring Modular Tickless Prioritized Preemptive RTOS for Avionics March 13, 2016 5

3.6 Tickless

A tickless system allows processes to wake when
they are required. No sub-tick CPU time wasters
are needed. Much more importantly, it allows
support of most deterministic IO without the use
of interrupts. Hence making these drivers very
deterministic.
Tickless removes and need to reduce periodic

events to common factors. So there is no limits
to mixing different periodic processes.
Since the kernel 3.10, Linux configured for

Tickless operation has shown an order magnitude
latency improvement 1.

3.6.1 Serial IO Example

A typical serial uart contains 16 bytes of buffered
data. Data is lost after 8.33 mS for a read process
on data at 19200 baud. Like the watch dog timer
example 3.5.1 a 4 mS polling with a 8 mS must
perform priority would meet full throughput. But
our application only requires 40 bytes every 72.44
mS, so only three polls are required every 72.44
mS.
This serial example can be easily be added to

any MTPPR system with minimal impact and
therefore minimal engineering attention.

3.6.2 Phased Lock Sync Example

A triple redundant flight control system common
mode failure analysis resulted in a phased lock
sync requirement. This aircraft uses a naturally
unstable aerodynamic design, therefore, once out
of control, there is no recovery. An EMI event
during a critical processor time, such as during a
context switch, the only recovery is after 100mS
watchdog timer and a warm start recovery period.
A phased lock step system forces each of the triple
redundant systems to be out of phase with each

other such that there is no two processors in
system critical code. 8.7

A per process delay based on the system would
still allow tightly coupled IO, as in the above
serial example, and meet the phased lock synch
requirement. Again, this example can be easily
be added to any MTPPR system with minimal
impact and therefore minimal engineering atten-
tion.

3.7 Cold, Warm, and Hot Starts

Ability to warm or hot start processors and ap-
plications are critical to many avionic system,
including those with the unstable aerodynamic
design. 3.6.2 Although requirements vary widely
for cold/warm/hot starts, the startup time is very
important. Even fast cold starts are possible by
allowing applications to start before the entire
system checkout is completed.

3.8 Signals, Coprocessors, and
Abortable Processes

Signal functions allow notification of system
events and user defined events such as messages
or data ready. Cold start, warm start, hot start,
parity error, bus error, power fail, are some com-
mon system signals. Signals can force process
aborts, and/or raise the priority of the process.
Processes can be abortable, so a context does
not need to be maintained. Processes can use
coprocessors, such as the ALTVEC, so a larger
context save may be needed when more that one
process uses it.

3.9 Human Factors

Human factors are getting considerable attention
in all aspects of aviation and automotive. This

Exploring Modular Tickless Prioritized Preemptive RTOS for Avionics March 13, 2016 6

section covers human factors associated with engi-
neering avionic solutions. It specifically addresses
overloading and underloading engineers.

3.9.1 Complexity

System and process complexity is the largest
cause for lost oversight. Those required to over
see, critic, and review do not always get the nec-
essary information. 8.1 8.3

3.9.2 Impact Certification Tool

Suspicious source code impact analysis tools have
plagued, management, engineers and DERs alike.
The binary impact tool proposed here uses actual
worst case data for the specific hardware under
test.

3.9.3 Modular

Many different groups can work on a module,
in a modular system, with zero impact on each
other. Productivity jumps because the ‘‘Need to
Know’’ drops.

4 Process

Although the Cert Tool is expected to be used
on the early projects, it is not expected to certify
a system. Full system testing will help verify
the tool, but only full third party analysis can
elevate the process to certification level. The
initial projects will quickly determine the value
of the process, and at that decide to get the
necessary credentials for the cert tool.

5 Requirements

There are some specific requirements beyond
those described in the Deterministic section. 3

5.1 GNU ELF Executables

The MTPPR kernel and MTPPR certification
tool shall support loading GNU ELF executables
configured specifically for the MTPPR kernel.
GNU’s binutils are GPL, which forces processing
of ELF files to be GPL, so the kernel and cert
tools must be GPL. Consider leading the http:

//open-avionics.sourceforge.net/ effort.

5.2 MTPPR Runtime Lib

A LGPL runtime lib shall be used by all the appli-
cations and kernel. This frees up all manufactures
use the system and keep their own proprietary
systems in place.

5.3 Integrated Diagnostic

An integrated Diagnostic, Verification, and Certi-
fication, log shall be maintained for each process.
Worst case delays and timing shall be recorded
for later review.

5.4 Space Protection

MTPPR shall only support full MMU protection
between all processes and the kernel. No process
can affect memory not strictly owned by the
process.

5.4.1 Zero-Copy Support

MTPPR shall support and encourage a zero-copy
application interface for interprocess communi-
cation and devices. This directly conflicts with
POSIX.

http://open-avionics.sourceforge.net/
http://open-avionics.sourceforge.net/

Exploring Modular Tickless Prioritized Preemptive RTOS for Avionics March 13, 2016 7

5.4.2 Inter process communication

All communication between processes and proces-
sors shall be through queues in a one way shared
memory region. Allowing a one to many design.

5.4.3 Device Access

MTPPR shall support device drivers directly sup-
plying the APIs. A general purpose POSIX API
shall not be directly supported.

5.4.4 Shared Libraries

MTPPR shall support a limited shared libraries.
GNU’s ELF fully supports dynamic shared li-
braries.

5.5 Read-Only Executables

All executable enabled images shall be read only.

5.6 Policy: Zero or Minimal Inter-
rupts

Only unexpected interrupts are encouraged. Rare
events are fine, not necessarily errors. Most
IO can be predicted and locked into with the
MTPPR timing system.

5.7 Multiple Independent Levels of
Security (MILS)

Each distributed dissemination shared memory
area shall support a rotating key set. Allowing
specific keys and authorizations to be updated at
any time.
Modular Tickless Prioritized Preemptive

RTOS (MTPPR) could considerably drop the
complexity associated with Multiple Independent

Levels of Security (MILS), if the Multi-Level Se-
curity (MLS) is acceptable as described in ‘‘Mul-
tiple Independent Levels of Security: The Chang-
ing Face of Range Information Management in
the 21st Century’’ by G. Derrick Hinton. The
tedious task to configuring disseminators 9.2 be-
comes automated and directly verified by the
certification tool. The comes close to meeting
the intent of ‘‘Design and Verification of Secure
Systems’’ by John Rushby.
A federated Multiple Security Levels (MSL)

scheme may no longer be needed with a properly
certified MLS kernel. The hurdle here, is the
validation.

6 Design

6.1 Tickless Scheduler

A simple tickless task scheduler is needed to
search through a message-process list for the next
process to run. Note, the message-process list is
sorted, starting with the highest priority. The
following pseudo code captures the core MTPPR
system design:

now = current_time

timer_interrupt = now + 100;

for mp in message-process list do

if mp.timeout >= now break

if mp.last_message != message break

if mp.timeout < timer_interrupt then

timer_interrupt = mp.timeout

end for

set timer to timer_interrupt

context switch to mp

Exploring Modular Tickless Prioritized Preemptive RTOS for Avionics March 13, 2016 8

6.2 Interrupts

Interrupts shall be organized and treated like high
priority processes, complete the time and event
limits. The kernel when receiving an interrupt
shall disable interrupts and allow these processes
to run. Only after all the interrupts have been
processed, will then kernel re-enable interrupts.

7 Cert Tool Verification

Verification shall include captured worst case
values from a fully tested system and comparing
them against the generated certification artifacts.
However, only a third party analysis can elevate
the process to certification level.

8 Rational and Issues

All the potential hardware, software, and system
issues are outside the scope of this paper. How-
ever, some specific issues critical to this paper
that need to be addressed. The following sec-
tions, listed by importance, describe these issues,
including sometimes forgotten issues:

8.1 Attention to DO-178B Level A
and B applications

Once an RTOS environment establishes that it
can certify level A and B applications, complete
with all worst case interference scenarios, only
the Level A and B applications get any attention
from safety. Even when lower level applications
interfere, strict control keeps the interference to
a known measurable quantity.

Assertion: The entire system does not need to
be deterministic, only the critical applications.

8.2 Worst Case Scenarios

Only the worst case scenarios and boundary con-
ditions are scrutinized by safety and quality. Al-
though the entire system maybe reviewed, it is
the worst case scenarios effects upon critical ap-
plications that are scrutinized by safety. If the
system happens to run faster, great!, but NEVER
miss a critical application dead line.

A large set of test scenarios are typical to cer-
tify an application, but it is the worst case values
that the certification tool uses for calculating
deterministic timing. So, regardless of normal
application performance, it is the worst case sce-
nario that is watched.

Assertion: The timing certification tools should
only be based on worst case scenarios.

Nominal and typical timing are still important
for other system aspects, but safety is concerned
with worst case.

8.3 Complexity

This paper views hardware, software, and sys-
tem complexity as the largest issue facing fu-
ture avionic systems. Hardware MTBF drops in-
versely with higher hardware complexities. How-
ever both software and system complexity often
leads to an exponential number of issues. Of-
ten diverting critical resources and attention way
from core goals.

The total impact of requirements and processes
are no longer visible to technical leads.

8.4 Thermal

Temperature can have large effects on electronics,
including power, response, timings, connections,
and clock crystals.

Exploring Modular Tickless Prioritized Preemptive RTOS for Avionics March 13, 2016 9

8.5 Lead-Free

Lead-Free electronic parts can short over time.
Apparently whiskers grow between adjacent con-
nections, even with the different board coatings.

8.6 Single Event Upset (SEU) and
Soft Errors

Avionic computers suffers 300 times Single Event
Upset (SEU) than the equivalent ground com-
puters. 2

8.7 Electro-Magnetic Interference
(EMI) events

Large Electro-Magnetic Interference (EMI)
events can effect all systems simultaneously. Non
digitally filtered discretes can lead to faulty
events.

8.8 Parity only buses (VME and PCI)

Double bit failures, such as through and EMI
event, allows bad data to be transferred. Worse,
if the address lines have a double fault, data can
be written anywhere into memory.

8.9 Silos and Conflict of Interests

The increased complexity of the newer avionic
systems has led to the architecture breakup. Each
new group now with a narrow scope, has their
own goals often in conflict with overall goals.

8.10 Obsolescence Issues

Able to perform long term support has also turned
into a major issue. Example, a ten year old

2http://en.wikipedia.org/wiki/Soft_error, http:

//en.wikipedia.org/wiki/Single_event_upset

system may only be minimally supported do to
unsupported third party kernel, whereas, a thirty
year old aircraft with nearly no standard parts,
but no third party obsolescence issues, can be
fully supported.
Either the test and support equipment must

support the future or a minimal amount of inven-
tory is required.

8.11 Test Support

Software and hardware test support are tightly
coupled with the complexity and obsolescence
issues. Test requirements must press the hard-
ware to its fullest and in different environmental
conditions.

8.12 Diagnostics and Error handling

Common life cycle diagnostic and error handling
techniques have been usurped by specific require-
ments.

8.13 Languages Ada, C, C++

C and C++ developers only need to be aware
of the early often forgotten reason Ada was se-
lected: Ada performs run time value and bound-
ary checking, hence minimizing the effects of bad
data transfers.

8.14 Priority Inversions

All systems are subject to priority inversion issues,
where a higher priority task is waiting on a lower
task. Only careful systems analysis or an effective
certification tools catch these before integration.

http://en.wikipedia.org/wiki/Soft_error
http://en.wikipedia.org/wiki/Single_event_upset
http://en.wikipedia.org/wiki/Single_event_upset

Exploring Modular Tickless Prioritized Preemptive RTOS for Avionics March 13, 2016 10

8.15 Structural Coverage

Although a complete and thorough level A struc-
tural coverage can guarantee a 95 percent cer-
tainty of a software package, both software bugs
and Soft Errors 8.6 can cause infinite loops.

8.16 Degraded operations due to
Hardware Failure

All single fault and many double faults must be
addressed.

8.17 Cache and MMU parity

Internal CPU Cache and MMU table information
shall minimally have parity to prevent a system
level memory corruption. A parity capable CPU
could reload the effected and continue with only
a minor delay. Other registers may only effect
the application running, except during a context
switch. The RTOS kernel shall only minimal
write access to scheduling and context switches.

8.18 Rule Enforcement

Recognizing FAA flight rules are paramount.
These rules already fully support all the necessary
exceptions for Military airspace, experimental ve-
hicles, and acrobatic etc. Many issues come from
attempting to add FAA rules as an after thought
instead of adding specifics to an FAA approved
system.

8.19 Double DMA protections

A bug or Soft Errors 8.6 can cause large scale
memory corruptions regardless of the kernel se-
lected. All DO-178B level A or B systems have
bounded DMA and bus accesses so that a double

failure is required to actually cause a system cor-
ruption. Data value checks must be performed
for all accesses to DMA regions when received
from across and parity only bus such as VME or
PCI.

8.20 Real Time Requirements

Most derived real time requirements can be re-
worked into non critical requirements and still
achieve the base requirement.

8.21 Electro-Magnetic Interference
(EMI) events

A synchronized multiple CPU architectures can
magnify the EMI effects, especially during critical
context switches.

9 Clarifications and Terms

9.1 Abortable Tasks

A tasks that are expected to be aborted, they
are always started from the entry point every
time they are scheduled. No context is needed
to support task resumption.

9.2 Disseminators

Disseminator is a distributed database term for
the authorized data delivery to a different secu-
rity level. It can include any number of trans-
lation, encryption and authentication schemes,
including dynamic rotation of keys.

9.3 Mean Time Between Failures
(MTBF)

The Mean Time Between Failures (MTBF) is a
common avionics reliability measure, often using

Exploring Modular Tickless Prioritized Preemptive RTOS for Avionics March 13, 2016 11

units of millions of hours.

9.4 MILS

Multiple Independent Levels of Security.

9.5 MLS

Multi-Level Security.

9.6 Multipriority

Software task assigned multiple priorities. A
Multipriority system is not the same as systems
that support dynamic priorities. The priorities
are locked at load time per a certified tool.

9.7 Preemptive

Ability to regularly suspend or abort a software
task to pass control to another task.

9.8 Prioritized

Always schedule higher priority tasks before lower
priority tasks.

9.9 Real-Time

The ‘‘Real-Time’’ term are systems and software
subject to ‘‘real-time constraint’’ 3. Since it ap-
plies to all the schedulers contained here, the
term does not differentiate between them.

3http://en.wikipedia.org/wiki/Real-time

10 References

1. Linux Tickless
http://events.linuxfoundation.org/

sites/events/files/slides/LinuxCon%

20-%20TicklessKernel_revc.pdf

http://en.wikipedia.org/wiki/Real-time
http://events.linuxfoundation.org/sites/events/files/slides/LinuxCon%20-%20TicklessKernel_revc.pdf
http://events.linuxfoundation.org/sites/events/files/slides/LinuxCon%20-%20TicklessKernel_revc.pdf
http://events.linuxfoundation.org/sites/events/files/slides/LinuxCon%20-%20TicklessKernel_revc.pdf

	Abstract
	Identification
	Deterministic
	MTPPR Certification Tool
	Network Example
	Quantifying Resource Impact
	General Worst Case
	Specific Worst Case
	Higher Priority Processes
	Network, DMA, and Bus Loading

	Modular and Protected
	Separate Core Bootloader, Kernel, and Driver Packages

	Multiple Priorities per Process
	Watchdog Timer Example

	Tickless
	Serial IO Example
	Phased Lock Sync Example

	Cold, Warm, and Hot Starts
	Signals, Coprocessors, and Abortable Processes
	Human Factors
	Complexity
	Impact Certification Tool
	Modular

	Process
	Requirements
	GNU ELF Executables
	MTPPR Runtime Lib
	Integrated Diagnostic
	Space Protection
	Zero-Copy Support
	Inter process communication
	Device Access
	Shared Libraries

	Read-Only Executables
	Policy: Zero or Minimal Interrupts
	Multiple Independent Levels of Security (MILS)

	Design
	Tickless Scheduler
	Interrupts

	Cert Tool Verification
	Rational and Issues
	Attention to DO-178B Level A and B applications
	Worst Case Scenarios
	Complexity
	Thermal
	Lead-Free
	Single Event Upset (SEU) and Soft Errors
	Electro-Magnetic Interference (EMI) events
	Parity only buses (VME and PCI)
	Silos and Conflict of Interests
	Obsolescence Issues
	Test Support
	Diagnostics and Error handling
	Languages Ada, C, C++
	Priority Inversions
	Structural Coverage
	Degraded operations due to Hardware Failure
	Cache and MMU parity
	Rule Enforcement
	Double DMA protections
	Real Time Requirements
	Electro-Magnetic Interference (EMI) events

	Clarifications and Terms
	Abortable Tasks
	Disseminators
	Mean Time Between Failures (MTBF)
	MILS
	MLS
	Multipriority
	Preemptive
	Prioritized
	Real-Time

	References

